Tandem Functionalization of Non-activated Alkenes and Alkynes in Intramolecular N-Acyloxyiminium Ion Carbocyclization. Synthesis of 6-Substituted Hydroindole 2-Carboxylic acids

Stephen Hanessian,* Martin Tremblay

Supplemental Information

- 1. Experimental procedures (21 pages)
- 2. X-ray crystal structure data (6 pages)
- 3. Copies of ¹H and ¹³C NMR spectra (54 pages)

(Spectra of *N*-Boc derivatives consist of two rotamers in most cases)

General information

Solvents were distilled under positive pressure of dry argon before use and dried by standard methods; THF and ether, from Na/benzophenone; and CH_2Cl_2 , from $CaCl_2$. All commercially available reagents were used without further purification. All reactions were performed under nitrogen atmosphere. NMR (1H , ^{13}C) spectra were recorded on AMX-300, ARX-400, AV-400 and DMX-600 spectrometers. Low- and high-resolution mass spectra were recorded on VG Micromass, AEI-MS 902 or Kratos MS-50 spectrometers using fast atom bombardement (FAB) or electrospray techniques. Optical rotations were recorded on a Perkin-Elmer 241 polarimeter in a 1 dm cell at ambient temperature. Analytical thin-layer chromatography was performed on Merck $60F_{254}$ pre-coated silica gel plates. Visualization was performed by ultraviolet light and/or by staining with ceric ammonium molybdate, ninhydrine or potassium permanganate. Flash column chromatography was performed using (40-60 μ m) silica gel at increased pressure.

(2S,4S)-5-Acetoxy-4-but-3-enyl-pyrrolidine-1,2-dicarboxylic acid 1-tert-butyl ester

2-methyl ester (2). To a solution of the N-Boc lactam (3.00 g, 10.0 mmol) in THF (70 mL) at -78°C, was added a solution of LiHBEt₃ (11.1 mL, 1.0 N in THF), stirred of 1h, quenched with NaHCO₃ (sat.), 2 drops of H₂O₂ (30% in H₂O) were added and the solution was concentrated under vacuum. The aqueous layer was extracted with CH₂Cl₂, the combined organic extracts were washed with brine, dried over Na₂SO₄ and concentrated under vacuum. The resulting oil was dissolved in CH₂Cl₂ (25 mL) and Et₃N (2.81 mL, 20.2 mmol), Ac₂O (2.86 mL, 30.3 mmol) and DMAP (cat.) were added successively. After stirring overnight, the solution was quenched with NaHCO₃ (sat.),

the aqueous layer was extracted with CH₂Cl₂, the combined organic extracts were washed with brine, dried over Na₂SO₄ and concentrated under vacuum. The crude oil obtained was purified by flash chromatography (EtOAc/Hexanes 15:85) to give the corresponding hemiaminal derivative 2 (3.13 g, 91%) as a mixture of diastereoisomeres.

Deleted: 6

(2S,3aS,6S,7aS)-6-Chloro-2,3,3a,4,5,6,7,7a-octahydroindole-1,2-dicarboxylic acid 1-tert-butyl ester 2-methyl ester (3a). To a solution of the hemiaminal 2 derivative (0.400 g, 1.17 mmol) in CH₂Cl₂ (8 mL) at -78° C, was added a solution of SnCl₄ (1.52 mL, 1.0 M in CH₂Cl₂) dropwise. After stirring for 10 min., the solution was quenched with NaHCO₃ (sat.), warmed up to RT, filtered on a small celite pad, the filtrated was washed with brine, dried over Na₂SO₄ and concentrated under vacuum. The crude oil obtained was purified by flash chromatography (EtOAc/Hexanes 10:90 to 15:85) to give 3a (0.245 g, 66%) as a colorless oil; ¹H RMN (400 MHz, DMSO-d₆) δ (rotamers) 4.20-4.15 (m, 1H), 4.05-3.92 (m, 1H), 3.85-3.75 (m, 1H), 3.64 (s, 1.5H), 3.61 (s, 1.5H), 2.42-2.20 (m, 2H), 2.16-2.05 (m, 1H), 1.95-1.80 (m, 2H), 1.75-1.60 (m, 4H), 1.17 (s, 4.5H), 1.13 (s, 4.5H); ¹³C NMR (100 MHz, DMSO-d₆) δ (rotamers) 174.4, 173.9, 153.8, 153.1, 80.1,

59.9, 58.0, 57.9, 57.8, 57.4, 52.9, 52.8, 39.3, 39.2, 38.9, 35.9, 35.2, 32.5, 32.0, 31.7, 29.1, 28.9, 24.8; $[\alpha]_D + 2.0^\circ$ (c 0.98, CHCl₃); HRMS for C₁₅H₂₅NO₄Cl calculated (M + H⁺)

318.14860 found 318.14722.

Deleted: 7a

Deleted: 6

Deleted: 7a

(2S,3aS,6S,7aS)-6-Bromo-2,3,3a,4,5,6,7,7a-octahydroindole-1,2-dicarboxylic acid 1-tert-butyl ester 2-methyl ester (3b). Same procedure as 3a. (78%); ¹H RMN (400

MHz, DMSO-d₆) δ (rotamers) 4.21-4.08 (m, 2H), 3.85-3.79 (m, 1H), 3.67 (s, 1.5H), 3.64 (s, 1.5H), 2.62-2.41 (m, 1H), 2.39-2.21 (m, 1H), 2.17-1.60 (m, 7H), 1.37 (s, 4.5H), 1.30 (s, 4.5H); ¹³C NMR (100 MHz, DMSO-d₆) δ (rotamers) 174.3, 173.8, 153.6, 152.9, 80.0, 79.9, 59.7, 59.3, 58.0, 57.6, 52.8, 52.7, 50.1, 50.0, 39.6, 35.6, 35.0, 32.7, 32.6, 32.3, 31.5, 29.0, 28.7, 25.6; $[\alpha]_D$ +5.9° (c 1.5, CHCl₃); HRMS for C₁₅H₂₄NO₄Br calculated 361.088870 found 361.088652.

Deleted: **7b**Deleted: **7a**

 $(2S, 3aS, 6R, 7aS) - 6-Acetoxy-2, 3, 3a, 4, 5, 6, 7, 7a-octahydroindole-1, 2-dicarboxylic\ acid$

1-tert-butyl ester 2-methyl ester (4a). To a solution of **3b** (0.500 g, 1.38 mmol) in toluene (12 mL), was added Bu₄NOAc (6.20 g, 20.7 mmol) and the mixture was heated at 40-50°C for 2h. After cooling down to RT, the solution was diluted with Hexanes, the organic solution was washed with H₂O, brine and dried over Na₂SO₄. The solvent was removed under vacuum and the resulting oil was purified by flash chromatography (EtOAc/Hexanes 15:85) to give **4a** (0.368 g, 78%) as a colorless oil; ¹H RMN (400 MHz, DMSO-d₆) δ 4.97-4.90 (m, 1H), 4.22-4.12 (m, 1H), 3.95-3.82 (m, 1H), 3.67 (s, 3H), 2.40-2.28 (m, 1H), 2.20-2.10 (m, 2H), 2.05 (s, 3H), 1.96-1.80 (m, 2H), 1.66-1.47 (m, 4H), 1.30 (s, 9H); ¹³C NMR (100 MHz, DMSO-d₆) δ 174.3, 170.6, 79.7, 69.8, 59.7, 59.2, 53.9, 52.7, 36.3, 35.8, 32.5, 31.9, 30.9, 28.7, 24.0, 21.8, 20.4; [α]_D -47.5° (c 1.55, CHCl₃); HRMS for C₁₇H₂₈NO₆ calculated (M + H⁺) 342.191663 found 342.193100.

Deleted: 8a

Deleted: 7b

Deleted: 8a

Br
$$CO_2Me$$
 N_3 N_3 N_3 N_3 N_4 N_5 N_5 N_5 N_5 N_6 N_6

(2S,3aS,6R,7aS)-6-Azido-N-tert-butyloxycarbonyl-octahydroindole-2-carboxylate

de méthyle (4b). To a solution of the bromide 3b (0.051 g, 0.141 mmol) in DMF (1 mL), was added NaN₃ (0.183 g, 2.82 mmol) and the solution was heated at 100°C for 24h. After cooled down to RT, the solution was diluted with EtOAc, the organic layer was washed with H₂O (3X), brine and dried over Na₂SO₄. The solvent was removed under vacuum and the resulting oil was purified by flash chromatography (EtOAc/Hexanes 15:85) to give the azido 4b (0.032 g, 71%) as a colorless oil; ¹H NMR (400 MHz, DMSO-d₆) δ 4.20-4.10 (m, 1H), 4.08-4.01 (m, 1H), 3.63-3.57 (broad s, 3H), 2.37-2.20 (m, 1H), 2.12-2.04 (m, 2H), 1.90-1.72 (m, 2H), 1.70-1.40 (m, 4H), 1.38-1.20 (m, 10H); ¹³C NMR (75 MHz, DMSO-d₆) δ 174.3, 173.8, 153.8, 153.1, 80.0, 59.6, 59.1, 57.5, 57.1, 54.1, 53.7, 52.7, 36.3, 35.7, 30.5, 28.8, 24.0, 20.6; IR cm⁻¹ 2936, 2104, 1751, 1699, 1399, 1167; [α]_D -43.8° (c 1.60, CHCl₃); HRMS for C₁₅H₂₄N₄O₄ calculated (M⁺) 324.179756, found 324.180101.

Deleted: 8b
Deleted: 7a

Deleted: 8b

(2S,3aS,6S,7aS)-6-(o/p-Tolyl)-octahydro-indole-1,2-dicarboxylic acid 1-*tert*-butyl ester 2-methyl ester ($\frac{5}{2}$). To a solution of the hemiaminal derivative $\frac{2}{2}$ (0.095 g, 0.278 mmol) in toluene (3 mL) at -78° C, was added BF₃OEt₂ (52 μ L, 0.417 mmol) dropwise. After stirring for 10 min., the solution was quenched with NaHCO₃ (sat.), warmed up to RT, diluted with CH₂Cl₂, washed with brine, dried over Na₂SO₄ and concentrated under vacuum. The crude oil obtained was purified by flash chromatography (EtOAc/Hexanes 20:80) to give $\frac{5}{2}$ (0.079 g, 77%) as a colorless oil; 1 H NMR (400 MHz, CDCl₃) δ (mixture of regioisomers and rotamers) 7.28-6.93 (m, 4H), 4.34-4.18 (m, 1H), 4.09-3.88 (m, 1H), 3.78-3.68 (m, 3H), 2.70-2.60 (m, 0.5H), 2.50-2.23 (m, 4.5H), 2.22-1.98 (m, 2H), 1.95-1.78 (m, 2H), 1.77-1.48 (m, 3H), 1.42 (s, 4.5H), 1.37 (s, 4.5H), 1.30-1.20 (m, 1H); 13 C NMR (100 MHz, CDCl₃) δ (mixture of regioisomers and rotamers) 174.4, 174.3, 153.6,

Deleted: 9

Deleted: 6

144.6, 138.2, 135.8, 135.5, 130.7, 129.5, 129.4, 128.6, 128.1, 127.1, 126.7, 126.5, 126.3, 125.7, 124.2, 80.2, 59.8, 59.3, 59.2, 58.6, 58.4, 58.2, 58.0, 52.6, 52.4, 37.6, 36.9, 36.3, 36.2, 35.0, 34.8, 33.0, 32.2, 28.7, 28.5, 27.8, 26.5, 21.4; HRMS for $C_{22}H_{32}NO_4$ calculated (M + H⁺) 374.233134, found 374.232794.

ON
$$CO_2Me$$
 AcO N CO_2Me Boc

(2S,4R)-5-Acetoxy-4-but-3-enyl-pyrrolidine-1,2-dicarboxylic acid 1-tert-butyl ester 2-methyl ester. Same procedure as for <u>2</u> (80%).

Deleted: 6

(2S,3aR,6R,7aR)-6-(o/p-Tolyl)-octahydro-indole-1,2-dicarboxylic acid 1-tert-butyl

ester 2-methyl ester (6). Same procedure as for 5 (74%); 1 H NMR (400 MHz, CDCl₃) δ (mixture of regioisomers and rotamers) 7.20-6.90 (m, 4H), 4.38-4.30 (m, 0.5H), 4.29-4.22 (m, 0.5H), 4.17-3.93 (m, 1H), 3.76-3.70 (m, 3H), 2.68-2.50 (m, 1H), 2.48-2.09 (m, 5H), 1.90-1.77 (m, 3H), 1.75-1.28 (m, 13H); 13 C NMR (100 MHz, CDCl₃) δ (mixture of regioisomers and rotamers) 174.2, 173.8, 154.4, 153.5, 144.6, 143.8, 143.7, 135.6, 130.8, 130.7, 129.6, 129.4, 128.6, 127.9, 127.4, 127.2, 127.0, 126.7, 126.4, 126.3, 126.2, 124.2, 124.1, 80.2, 80.1, 60.8, 58.7, 58.3, 58.3, 58.0, 57.8, 57.6, 52.6, 52.4, 37.3, 36.4, 35.2, 35.1, 34.3, 34.2, 32.4, 31.5, 31.4, 28.8, 28.7, 26.3, 26.0, 21.4; HRMS for $C_{22}H_{32}NO_4$ calculated (M + H⁺) 374.233134, found 374.232887.

Deleted: 12
Deleted: 9

(2S,3aS,6S,7aS)-6-(o/p-1,2-Dimethyl-phenyl)-2,3,3a,4,5,7a-hexahydro-indole-1,2-dicarboxylic acid 1-*tert*-butyl ester 2-methyl ester (Entry 1, table 1). Same procedure as for 5, except that the reaction was done in *o*-xylene at -20° C (67%); 1 H NMR (400 MHz, CDCl₃) δ (mixture of regioisomers and rotamers) 7.12-6.89 (m, 3H), 4.32-4.18 (m, 1H), 4.10-3.88 (m, 1H), 3.80-3.69 (m, 3H), 2.80-2.68 (m, 0.4H), 2.50-1.95 (m, 10.6H), 1.93-1.80 (m, 2H), 1.75-1.25 (m, 12H); 13 C NMR (100 MHz, CDCl₃) δ (mixture of regioisomers and rotamers) 173.8, 173.7, 173.6, 153.7, 152.9, 143.8, 143.6, 136.6, 136.4, 134.2, 133.6, 129.5, 129.4, 128.0, 127.6, 127.4, 125.5, 125.3, 124.0, 123.9, 122.9, 105.0, 79.6, 59.3, 58.8, 58.1, 57.8, 57.6, 52.0, 51.8, 41.3, 40.9, 37.4, 36.4, 35.7, 35.3, 34.8, 32.5, 31.7, 31.6, 28.3, 28.1, 27.6, 26.2, 26.0, 20.9, 19.7, 19.2, ; HRMS for C₂₃H₃₄NO₄ calculated (M + H $^{+}$) 388.248784, found 388.247856.

(2S,3aS,6S,7aS)-6-(o/p-Benzo[1,3]dioxolyl)-2,3,3a,4,5,7a-hexahydro-indole-1,2-dicarboxylic acid 1-*tert*-butyl ester 2-methyl ester (Entry 2, table 1). Same procedure as for 5, except that the reaction was done in phthalane at -15° C (58%); 1 H NMR (400 MHz, CDCl₃) δ (mixture of regioisomers and rotamers) 6.80-6.60 (m, 3H), 5.95-5.88 (m, 2H), 4.30-4.18 (m, 1H), 4.07-3.97 (m, 0.6H), 3.96-3.87 (m, 0.4H), 3.74-3.67 (m, 3H), 2.68-2.58 (m, 0.4H), 2.42-2.29 (m, 2.6H), 2.20-2.05 (m, 3H), 1.88-1.50 (m, 4H), 1.48-1.30 (m, 9H); 13 C NMR (100 MHz, CDCl₃) δ (mixture of regioisomers and rotamers) 174.4, 154.3, 153.5, 147.9, 140.9, 140.8, 128.2, 121.9, 120.2, 119.9, 108.6, 108.5, 107.8, 106.8, 101.1, 100.8, 80.2, 60.8, 59.8, 59.3, 57.8, 52.4, 52.3, 41.9, 41.7, 36.4,

Deleted: 9

36.2, 36.1, 35.7, 32.9, 28.8, 28.7, 26.6, 26.2, 14.6; HRMS for $C_{22}H_{29}NO_6$ calculated (M⁺) 403.199488, found 403.201268.

(2S,3aS,6S,7aS)-6-(o/p-lsopropyl-phenyl)-2,3,3a,4,5,7a-hexahydro-indole-1,2-

as for $\underline{\mathbf{5}}$, except that the reaction was done in cumene at -78° C (70%); 1 H NMR (400 MHz, CDCl₃) δ (mixture of regioisomers and rotamers) 7.28-7.00 (m, 4H), 4.37-4.18 (m, 1H), 4.08-3.88 (m, 1H), 3.79-3.68 (m, 3H), 2.93-2.82 (m, 1H), 2.50-2.30 (m, 2H), 2.25-2.00 (m, 2H), 1.90-1.78 (m, 2H), 1.77-1.34 (m, 13H), 1.30-1.18 (m, 6H); 13 C NMR (100 MHz, CDCl₃) δ (mixture of regioisomers and rotamers) 174.4, 174.2, 154.4, 153.6, 153.5, 149.2, 147.0, 146.6, 144.1, 144.0, 128.8, 128.7, 127.1, 127.0, 126.8, 125.8, 125.7, 124.5, 124.4, 80.2, 59.3, 58.4, 58.2, 58.1, 52.6, 52.4, 41.5, 36.9, 36.2, 35.9, 35.4, 34.6, 34.0, 32.9, 32.1, 29.3, 28.9, 28.8, 28.2, 26.5, 26.3, 24.5; HRMS for $C_{24}H_{36}NO_4$ calculated (M + H $^+$) 402.264434, found 402.263991.

dicarboxylic acid 1-tert-butyl ester 2-methyl ester (Entry 3, table 1). Same procedure

(2S,3aS,6S,7aS)-6-(m/p-tert-Butyl-phenyl)-2,3,3a,4,5,7a-hexahydro-indole-1,2-dicarboxylic acid 1-tert-butyl ester 2-methyl ester (Entry 4, table 1). Same procedure as for 5, except that the reaction was done in tert-butylbenzene at -78°C (50%); ¹H NMR (400 MHz, CDCl₃) δ (mixture of regioisomers and rotamers) 7.37-7.00 (m, 4H),

4.36-4.20 (m, 1H), 4.10-4.00 (m, 0.5H), 3.98-3.89 (m, 0.5H), 3.77 (s, 1.5H), 3.74 (s,

Deleted: 9

1.5H), 2.55-2.35 (m, 2.5H), 2.34-2.00 (m, 2.5H), 1.92-1.80 (m, 2H), 1.78-1.65 (m, 1.5H), 1.62-1.20 (m, 19.5H); 13 C NMR (100 MHz, CDCl₃) δ (mixture of regioisomers and rotamers) 174.4, 174.2, 154.4, 153.6, 153.5, 151.4, 149.3, 149.1, 146.3, 143.7, 143.6, 128.5, 128.4, 126.9, 126.8, 125.7, 125.5, 124.6, 124.5, 123.9, 123.8, 123.6, 123.4, 80.2, 59.9, 59.3, 58.4, 58.2, 58.1, 52.5, 52.3, 41.6, 41.3, 36.9, 36.2, 36.1, 35.9, 35.4, 34.7, 32.9, 32.1, 31.8, 29.2, 28.9, 28.7, 28.1, 28.0, 26.5, 26.3; HRMS for $C_{25}H_{37}NO_4$ calculated (M⁺) 415.272259, found 415.272741.

Same procedure as for 5, except that the reaction was done in anisole at −35°C (69%,

1:1 o/p). (2S,3aS,6S,7aS)-6-(o-Methoxy-phenyl)-octahydro-indole-1,2-dicarboxylic acid 1-tert-butyl ester 2-methyl ester (Entry 5, table 1); ¹H NMR (300 MHz, CDCl₃) δ (rotamers) 7.17-7.05 (m, 2H), 6.83-6.78 (m, 2H), 4.30 (t, 0.5H, J=8.6 Hz), 4.22 (t, 0.5H, J=8.6 Hz), 4.08-3.95 (m, 0.5H), 3.95-3.85 (m, 0.5H), 3.82-3.66 (m, 6H), 2.48-2.26 (m, 2H), 2.22-2.00 (m, 2H), 1.90-1.75 (m, 2H), 1.70-1.30 (m, 13H); ¹³C NMR (75 MHz, CDCl₃) δ (rotamers) 174.5, 174.4, 158.3, 158.2, 154.4, 153.6, 139.0, 128.1, 114.2, 114.1, 80.2, 59.8, 58.4, 58.0, 55.8, 55.7, 52.4, 41.3, 41.0, 36.2, 35.9, 35.5, 32.9, 32.1, 29.4, 28.9, 28.7, 28.6, 26.5, 26.3; $[\alpha]_D$ -21.9° (c 1.05, CHCl₃); HRMS for $C_{22}H_{31}NO_5$ calculated (H⁺) 389.220223, found 389.221982. (2S,3aS,6S,7aS)-6-(p-Methoxyphenyl)-octahydro-indole-1,2-dicarboxylic acid 1-tert-butyl ester 2-methyl ester (Entry 5, table 1); ¹H NMR (300 MHz, CDCl₃) δ (rotamers) 7.21-7.05 (m, 2H), 6.94-6.70 (m, 2H), 4.33-4.17 (m, 1H), 4.15-3.90 (m, 1H), 3.82-3.62 (m, 6H), 2.98-2.80 (m, 1H), 2.45-2.25 (m, 1H), 2.24-1.95 (m, 3H), 1.94-1.75 (m, 2H), 1.75-1.28 (m, 12H); ¹³C NMR (75 MHz, CDCl₃) δ (rotamers) 174.5, 174.2, 157.0, 154.4, 153.5, 134.9, 134.8, 127.3, 127.1, 126.9, 121.0, 120.8, 110.6, 80.3, 80.1, 59.9, 59.3, 58.6, 58.1, 55.7, 52.6, 52.4, 37.0, 36.4, 34.7, 34.4, 34.2, 34.1, 33.0, 32.2, 28.8, 28.7, 27.4, 27.3, 26.5; $\lceil \alpha \rceil_D$ -25.0° (c

1.35, CHCl₃); HRMS for C₂₂H₃₁NO₅ calculated (H⁺) 389.220223, found 389.222015.

dicarboxylic acid 1-tert-butyl ester 2-methyl ester (Entry 6, table 1). Same procedure

(2S,3aS,6S,7aS)-6-(2/3-Benzofuranyl)-2,3,3a,4,5,7a-hexahydro-indole-1,2-

as for $\underline{5}$, except that the reaction was done in benzofuran at -25° C (50%); 1 H NMR (400 MHz, CDCl₃) δ (mixture of regioisomers and rotamers) 7.63-7.05 (m, 4H), 6.82-6.68 (m, 1H), 4.38-4.19 (m, 1H), 4.18-4.05 (m, 1H), 3.91-3.66 (m, 3H), 2.65-2.52 (m, 1H), 2.50-2.28 (m, 2H), 2.28-2.02 (m, 2H), 2.01-1.30 (m, 14H); 13 C NMR (100 MHz, CDCl₃) δ (mixture of regioisomers and rotamers) 174.4, 174.2, 154.3, 153.3, 145.6, 145.5, 144.9, 144.8, 139.8, 124.8, 124.7, 124.0, 121.8, 119.6, 119.3, 119.1, 111.5, 111.4, 109.6, 106.9, 106.7, 105.2, 80.2, 59.8, 59.3, 58.4, 58.1, 52.6, 52.4, 39.6, 39.5, 36.3, 36.2, 36.1, 34.7, 32.9, 32.2, 28.8, 28.7, 28.0, 27.7, 26.5, 26.3, 19.8; HRMS for $C_{23}H_{29}NO_5$ calculated (M⁺) 399.204573, found 399.205404.

(2S,3aS,6S,7aS)-6-(2,4-Dimethyl-phenyl)-octahydro-indole-1,2-dicarboxylic acid 1-

tert-butyl ester 2-methyl ester (Entry 7, table 1). Same procedure as for 5, except that the reaction was done in *m*-xylene at -45° C (64%); 1 H NMR (400 MHz, CDCl₃) δ (rotamers) 7.17-7.05 (m, 1H), 7.02-1.95 (m, 2H), 4.36-4.18 (m, 1H), 4.07-3.88 (m, 1H), 3.80-3.65 (m, 3H), 2.98-2.86 (m, 0.4H), 2.68-2.58 (m, 0.6H), 2.50-1.98 (m, 11H), 1.93-1.77 (m, 2H), 1.70-1.30 (m, 11H); 13 C NMR (100 MHz, CDCl₃) δ (rotamers) 174.5, 174.2, 154.3, 153.5, 141.6, 136.5, 135.7, 135.5, 135.4, 131.6, 131.5, 127.3, 127.1, 126.3, 126.1, 125.7, 80.2, 80.1, 59.8, 59.3, 58.6, 58.2, 52.6, 52.4, 39.1, 38.8, 37.4, 37.2,

Deleted: 9

36.9, 36.4, 36.3, 35.1, 34.9, 33.0, 32.2, 28.8, 28.7, 28.0, 26.6, 21.3, 19.7, 19.5; $[\alpha]_D$ -22° (c 1.2, CHCl₃); HRMS for C₂₃H₃₄NO₄ calculated (M + H⁺) 388.248784, found 388.247364.

(2S,3aS,6S,7aS)-6-(2,4,6-Trimethyl-phenyl)-octahydro-indole-1,2-dicarboxylic acid

1-tert-butyl ester 2-methyl ester (Entry **8**, table **1**). Same procedure as for $\frac{5}{5}$, except that the reaction was done in mesitylene at -40° C (78%); 1 H NMR (300 MHz, CDCl₃) δ (rotamers) 6.84-6.78 (m, 2H), 4.35-4.23 (m, 1H), 4.08-3.80 (m, 1H), 3.79 (s, 1.5H), 3.76 (s, 1.5H), 2.96-2.85 (m, 1H), 2.44-1.91 (m, 15H), 1.87-1.79 (m, 2H), 1.53-1.39 (m, 10H); 13 C NMR (75 MHz, CDCl₃) δ (rotamers) 174.5, 174.2, 154.3, 153.5, 139.1, 139.0, 135.6, 135.4, 80.2, 80.1, 59.8, 59.3, 58.6, 58.2, 52.6, 52.4, 38.7, 38.4, 37.1, 36.4, 33.2, 32.4, 32.0, 31.4, 28.8, 28.7, 27.2, 27.1, 25.0, 24.8, 21.0; α _D -31.7° (c 1.06, CHCl₃); HRMS for C₂₄H₃₅NO₄ calculated (M[†]) 401.256609, found 401.257421.

Trifluoro-methanesulfonic acid 4-trimethylsilanyl-but-3-ynyl ester (10). To a solution of pyridine (5.63 mL, 69.7 mmol) in CH_2CI_2 (70 mL) at $-78^{\circ}C$, was added Tf_2O (9.78 mL, 58.1 mmol), the mixture was stirred for 15 min. and the alcohol (8.26 g, 58.1 mmol) was added dropwise. After stirring for 20 min., the mixture was diluted with CH_2CI_2 , washed with ice cooled HCl 1N (40 mL), water and dried over Na_2SO_4 . The solvent was removed under vacuum (without heating) and the resulting oil was purified on a small pad of silica gel (Hexanes/Et₂O 5:1) to give the corresponding triflate 10 (11.7 g, 74%) as a light brown oil; 1H NMR (300 MHz, $CDCI_3$) δ 4.56 (t, 2H, J=6.8 Hz),

Deleted: 16

Deleted: 9

2.76 (t, 2H, J=6.8 Hz), 0.15 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 120.6, 116.3, 98.4, 88.6, 73.6, 21.0, -0.4.

$$\begin{array}{c} \text{NHBoc} \\ \text{MeO}_2\text{C} & \text{CO}_2\text{Me} \\ \end{array} \qquad \begin{array}{c} \text{NHBoc} \\ \text{MeO}_2\text{C} & \text{CO}_2\text{Me} \\ \end{array}$$

(2S,4S)-2-tert-Butoxycarbonylamino-4-(4-trimethylsilanyl-but-3-ynyl)-pentanedioic

acid dimethyl ester (11). To a solution of *N*-Boc-glutamic acid dimethylester 1 (4.72 g, 17,1 mmol) in THF (100 mL) at -78° C, was added LiHMDS (36.0 mL, 1.0 N in THF), stirred for 45 min. and a solution of the triflate 10 (9.32 g, 34 mmol) in THF (35 mL) at -78° C was added dropwise *via canula*. After stirring for 20 min., the solution was quenched with NH₄Cl (2N), warmed up to RT and concentrated under vacuum. The resulting aqueous solution was extracted with CH₂Cl₂, the combined organic extracts were washed with brine and dried over Na₂SO₄. The solvent was removed under vacuum and the resulting oil was purified by flash chromatography (EtOAc/Hexanes 1:9 to 15:85) to give 11 (4.44 g, 65%) as a colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 5.00-4.88 (m, 1H), 4.30-4.20 (m, 1H), 3.68 (s, 3H), 3.63 (s, 3H), 2.58-2.47 (m, 1H), 2.16 (t, 2H, J=7.3 Hz), 2.00-1.85 (m, 2H), 1.83-1.75 (m, 1H), 1.75-1.61 (m, 1H), 1.39 (s, 9H), 0.09 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 175.8, 173.1, 155.7, 106.0, 85.7, 80.4, 52.8, 52.5, 52.2, 41.6, 34.4, 31.5, 28.6, 18.1, 0.4; [α]_D +3.2° (c 1.5, CHCl₃); FAB/MS for C₁₉H₃₄NO₆Si calculated (M + H⁺) 400.2, found 400.2.

(2S,4S)-2-tert-Butoxycarbonylamino-4-but-3-ynyl-pentanedioic acid dimethyl

11

ester. To a solution of the TMS derivative 11 (4.00 g, 10.0 mmol) in THF (50 mL), was added AcOH (0.63 mL, 11.0 mmol) and a solution of TBAF (11.0 mL, 1.0 M in THF). After stirring at RT for 45 min., the solution was concentrated under vacuum and the

Deleted: 17

Deleted: 5

Deleted: 16

Deleted: 17

resulting residue was purified by flash chromatography (EtOAc/Hexanes 25:75) to give the corresponding terminal alkyne (2.88 g, 88%) as a colorless oil; 1 H NMR (400 MHz, CDCl₃) δ 4.98 (d, 1H, J=8.7 Hz), 4.35-4.30 (m, 1H), 3.71 (s, 3H), 3.66 (s, 3H), 2.65-2.61 (m, 1H), 2.22-2.15 (m, 2H), 2.02-1.90 (m, 3H), 1.88-1.78 (m, 1H), 1.77-1.68 (m, 1H), 1.41 (s, 9H); 13 C NMR (100 MHz, CDCl₃) δ 175.3, 172.5, 155.1, 82.7, 79.9, 69.0, 52.2, 51.9, 51.7, 40.8, 34.0, 30.7, 28.1, 16.1; [α]_D +7.9° (c 0.90, CHCl₃); FAB/MS for C₁₆H₂₆NO₆ calculated (M + H $^+$) 328.2, found 328.2.

NHBoc
$$CO_2Me$$

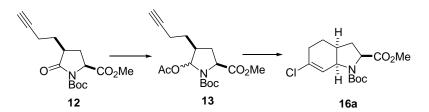
NHBoc CO_2Me

12

(2S,4S)-4-But-3-ynyl-5-oxo-pyrrolidine-1,2-dicarboxylic acid 1-tert-butyl ester 2-

methyl ester (12). To a solution of the of N-Boc-glutamic acid dimethylester derivative (2.50 g, 7.64 mmol) in CH₂Cl₂ (30 mL), was added TFA (5.6 mL). After stirring at RT until no trace of starting material, the solution was concentrated under vacuum, the resulting oil was dissolved in toluene (100 mL), heated at reflux for 1.5h and the solution was concentrated under vacuum. To a solution of the lactams obtained in CH₂Cl₂ (30 mL), was added successively Et₃N (3.20 mL, 22.9 mmol), Boc₂O (2.50 g, 11.5 mmol) followed by DMAP (cat.). After stirring overnight, the solution was guenched with NH₄Cl (2N), the aqueous layer was extracted with CH₂Cl₂, the combined organic extracts were washed with brine, dried over Na₂SO₄ and concentrated under vacuum. The crude oil obtained was purified by flash chromatography (EtOAc/Hexanes 15:85 to 30:70) to give compounds 12 (1.80 g, 80%) as a colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 4.47 (t, 1H, J=8.2 Hz, 3.74 (s, 3H), 2.75-2.65 (m, 1H), 2.60-2.50 (m, 1H), 2.42-2.31 (m, 1H), 2.28-2.18 (m, 1H), 2.13-2.04 (m, 1H), 1.94 (t, 1H, J=2.6 Hz), 1.70-1.50 (m, 2H), 1.45 (s, 9H); 13 C NMR (100 MHz, CDCl₃) δ 175.0, 172.3, 149.6, 84.1, 83.2, 69.9, 57.7, 52.9, 41.8, 30.1, 28.2, 16.7; $[\alpha]_D$ -10.7° (c 1.00, CHCl₃); HRMS for C₁₅H₂₂NO₅ calculated (M + H⁺) 296.149798, found 296.151085.

Deleted: 18


ON
$$CO_2Me$$
AcO N CO_2Me
Boc
Boc
12

13

H
CO₂Me
H
Boc
14

(2S,3aS,7aS)-6-(o/p-Tolyl)-2,3,3a,4,5,7a-hexahydro-indole-1,2-dicarboxylic acid 1-

tert-butyl ester 2-methyl ester (14). Same procedure as 2 for reduction/acetylation (94%) and as compound 5 for cyclization (69%); 1 H NMR (400 MHz, CDCl₃) δ (mixture of regioisomers and rotamers) 7.35-7.00 (m, 4H), 6.21 (s, 0.25H), 6.08 (s, 0.25H), 5.78 (s, 0.25H), 5.65 (s, 0.25H), 4.60-4.50 (m, 0.5H), 4.48-4.40 (m, 0.5H), 4.38-4.20 (m, 1H), 3.77-3.62 (m, 3H), 2.60-2.43 (m, 1H), 2.40-1.80 (m, 9H), 1.56-1.38 (m, 9H); 13 C NMR (100 MHz, CDCl₃) δ (mixture of regioisomers and rotamers) 174.0, 173.9, 154.6, 154.2, 154.0, 143.7, 138.9, 138.6, 135.5, 135.3, 130.5, 130.3, 129.4, 129.3, 128.7, 128.6, 128.3, 127.3, 127.2, 126.1, 126.0, 125.9, 125.5, 125.3, 123.1, 80.4, 59.6, 59.5, 59.1, 57.5, 57.1, 56.9, 52.5, 52.4, 52.3, 35.7, 35.1, 34.9, 32.3, 32.2, 31.5, 28.9, 28.7, 28.6, 25.3, 25.1, 23.2, 22.9, 20.0, 19.9; HRMS for C₂₂H₂₉NO₄ calculated (M⁺) 372.217484, found 372.218648.

(2S,3aS,7aS)-6-Chloro-2,3,3a,4,5,7a-hexahydro-indole-1,2-dicarboxylic acid 1-tert-

butyl ester 2-methyl ester (16a). Same procedure as 2 for reduction/acetylation (94%). To a solution of the hemiaminal derivative 13 (0.200 g, 0.589 mmol) in CH₂Cl₂ (5 mL) at -78°C, was added a solution of SnCl₄ (0.77 mL, 1.0 M in CH₂Cl₂) dropwise. After stirring for 10 min., the solution was quenched with NaHCO₃ (sat.), warmed up to RT, filtered on a small celite pad, the filtrated was washed with brine, dried over Na₂SO₄ and

Deleted: 20

Deleted: 6

Deleted: 9

Deleted: 22a

Deleted: 6

concentrated under vacuum. The crude oil obtained was purified by flash chromatography (EtOAc/Hexanes 10:90 to 15:85) to give 16a (0.106 g, 57%) as a colorless oil; 1 H NMR (400 MHz, CDCl₃) δ (rotamers) 6.03 (broad s, 0.5H), 5.90 (broad s, 0.5H), 4.42 (broad s, 0.5), 4.33 (broad s, 0.5H), 4.30-4.10 (m, 1H), 3.70 (s, 3H), 2.50-2.27 (m, 2H), 2.26-2.08 (m, 2H), 1.97-1.70 (m, 3H), 1.46 (s, 4.5H), 1.39 (s, 4.5 H); 13 C NMR (100 MHz, CDCl₃) δ (rotamers) 173.6, 173.2, 154.3, 153.9, 132.9, 132.5, 124.4, 124.2, 80.8, 80.7, 59.4, 58.9, 57.8, 57.6, 52.6, 52.4, 35.2, 34.5, 32.0, 31.2, 28.8, 28.6, 28.3, 28.2, 28.1, 23.5, 23.4; [α]_D +31.8° (c 1.08, CHCl₃); HRMS for C₁₅H₂₁NO₄Cl calculated (M – H⁻) 314.115911, found 314.116090.

ON CO_2Me AcO O_2Me Boc O_2Me Br O_2Me Boc O_2Me Boc O

(2S,3aS,7aS)-6-Bromo-2,3,3a,4,5,7a-hexahydro-indole-1,2-dicarboxylic acid 1-tert-

butyl ester 2-methyl ester (16b). Same procedure as 2 for reduction/acetylation (94%) and same procedure as 16a for cyclization (80%); 1 H NMR (400 MHz, CDCl₃) δ (rotamers) 6.26 (broad s, 0.5H), 6.13 (broad s, 0.5H), 2.41-4.33 (broad s, 0.5 H), 4.33-4.10 (m, 1.5H), 3.70 (s, 3H), 2.50-2.22 (m, 3H), 2.21-2.08 (m, 1H), 1.98-1.67 (m, 3H), 1.45 (s, 4.5H), 1.38 (s, 4.5 H); 13 C NMR (100 MHz, CDCl₃) δ (rotamers) 173.6, 173.2, 154.2, 153.8, 128.5, 128.4, 123.2, 122.8, 80.9, 80.7, 59.4, 58.9, 58.6, 58.3, 57.6, 52.6, 52.5, 35.1, 34.5, 34.3, 32.0, 31.2, 30.6, 30.5, 28.8, 28.6, 28.3, 24.1, 24.0, 23.4; [α]_D +53.6° (c 1.03, CHCl₃); HRMS for C₁₅H₂₁NO₄Br calculated (M – H⁻) 358.065395, found 358.064219.

Br
$$\stackrel{\text{H}}{\overset{\text{L}}{\overset{\text{H}}}{\overset{\text{H}}{\overset{\text{H}}}{\overset{\text{H}}{\overset{\text{H}}{\overset{\text{H}}{\overset{\text{H}}}{\overset{\text{H}}{\overset{\text{H}}}{\overset{\text{H}}{\overset{\text{H}}}{\overset{\text{H}}}{\overset{\text{H}}}{\overset{\text{H}}{\overset{\text{H}}}{\overset{\text{H}}}{\overset{\text{H}}}{\overset{\text{H}}{\overset{\text{H}}}{\overset{\text{H}}}{\overset{\text{H}}}{\overset{\text{H}}}{\overset{\text{H}}}{\overset{\text{H}}}{\overset{\text{H}}}{\overset{\text{H}}}{\overset{\text{H}}}{\overset{\text{H}}}{\overset{\text{H}}}{\overset{\text{H}}}{\overset{\text{H}}}{\overset{\text{H}}}{\overset{\text{H}}}{\overset{\text{H}}}{\overset{\text{H}}}{\overset{\text{H}}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset{\text{H}}}{\overset{\text{H}}}{\overset{\text{H}}}{\overset{\text{H}}}}{\overset{\text{H}}}{\overset{\text{H}}}{\overset{\text{H}}}{\overset{\text{H}}}{\overset{\text{H}}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset{\text{H}}}{\overset{\text{H}}}{\overset{\text{H}}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset{\text{H}}}{\overset{\text{H}}}{\overset{\text{H}}}{\overset{\text{H}}}{\overset{\text{H}}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset{\text{H}}}{\overset{\text{H}}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset{\text{H}}}{\overset{\text{H}}}}{\overset{\text{H}}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset{\text{H}}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset{\text{H}}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset{H}}}{\overset{\text{H}}}{\overset{\text$$

Deleted: 22a

Deleted: 22b

Deleted: 22a

(2S, 3aS, 7aS) - 6 - (3-Formyl-phenyl) - 2, 3, 3a, 4, 5, 7a-hexahydro-indole-1, 2-dicarboxylic - 1, 2-di

acid 1-*tert*-butyl ester 2-methyl ester (17). Same procedure as 21 (70%); ¹H NMR (400 MHz, CDCl₃) δ (rotamers) 10.0 (s, 1H), 7.90-7.80 (m, 1H), 7.78-7.57 (m, 2H), 7.55-7.38 (m, 1H), 6.35 (s, 0.6H), 6.19 (s, 0.4H), 4.62-4.50 (m, 0.6H), 4.49-4.40 (m, 0.4H), 4.30 (t, 0.4H, J=8.2 Hz), 4.26 (t, 0.6H, J=8.2 Hz), 3.69-3.65 (m, 3H), 2.60-2.28 (m, 3H), 2.23-2.10 (m, 1H), 2.07-1.70 (m, 4H), 1.50 (s, 4.5H), 1.42 (s, 4.5H); ¹³C NMR (100 MHz, CDCl₃) δ (rotamers) 192.9, 173.9, 154.2, 142.9, 136.8, 135.3, 132.1, 131.8, 129.5, 129.3, 129.2, 128.8, 127.2, 127.0, 126.4, 125.6, 125.4, 80.6, 59.4, 58.9, 57.5, 57.4, 56.1, 52.5, 52.4, 35.7, 35.0, 32.2, 31.4, 28.9, 28.7, 22.9, 22.7; [α]_D +42.1° (c 1.25, CHCl₃); FAB/MS for C₂₂H₂₈NO₅ calculated (M + H⁺) 386.2, found 386.2.

Deleted: 23 Deleted: 27

Br $\stackrel{\text{H}}{\overset{\text{L}}{\overset{\text{H}}}{\overset{\text{H}}{\overset{\text{H}}{\overset{\text{H}}{\overset{\text{H}}}{\overset{\text{H}}{\overset{\text{H}}}{\overset{\text{H}}{\overset{\text{H}}}{\overset{\text{H}}{\overset{\text{H}}}{\overset{\text{H}}{\overset{\text{H}}}{\overset{\text{H}}}{\overset{\text{H}}}{\overset{\text{H}}}{\overset{\text{H}}}{\overset{\text{H}}{\overset{\text{H}}}{\overset{\text{H}}}{\overset{\text{H}}}{\overset{\text{H}}}{\overset{\text{H}}}{\overset{\text{H}}}{\overset{\text{H}}}{\overset{\text{H}}}{\overset{\text{H}}}{\overset{\text{H}}}{\overset{\text{H}}}{\overset{\text{H}}}{\overset{\text{H}}}{\overset{\text{H}}}}{\overset{\text{H}}}{\overset{\text{H}}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset{\text{H}}}{\overset{\text{H}}}}{\overset{\text{H}}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset{\text{H}}}{\overset{\text{H}}}{\overset{\text{H}}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset{\text{H}}}{\overset{\text{H}}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset{\text{H}}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset{\text{H}}}{\overset{\text{H}}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset{\text{H}}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset{\text{H}}}{\overset{\text{H}}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset$

(2S,3aS,7aS)-6-(3-Nitro-phenyl)-2,3,3a,4,5,7a-hexahydro-indole-1,2-dicarboxylic

acid 1-*tert*-butyl ester 2-methyl ester (18). Same procedure as 21 (73%); ¹H NMR (400 MHz, CDCl₃) δ (rotamers) 8.20 (s, 1H), 8.10-8.03 (m, 1H), 7.78-7.63 (m, 1H), 7.48-7.39 (m, 1H), 6.38 (s, 0.6H), 6.22 (s, 0.4H), 4.60-4.52 (m, 0.6H), 4.50-4.41 (m, 0.4H), 4.31 (t, 0.4H, J=8.3 Hz), 4.25 (t, 0.6H, J=8.3 Hz), 3.67 (s, 3H), 2.60-2.30 (m, 3H), 2.27-2.17 (m, 1H), 2.02-1.75 (m, 3H), 1.50 (s, 4.5H), 1.43 (s, 4.5H); ¹³C NMR (100 MHz, CDCl₃) δ (rotamers) 173.9, 173.6, 154.2, 148.7, 143.7, 135.2, 134.5, 132.1, 131.6, 129.7, 129.5, 127.6, 126.7, 126.5, 122.3, 120.8, 80.7, 60.8, 59.4, 58.9, 57.4, 57.2, 56.2, 52.5, 52.4, 34.9, 32.1, 31.3, 28.9, 28.7, 22.9, 22.8; [α]_D +70.6° (c 1.42, CHCl₃); HRMS for C₁₀H₂₆N₂O₆ calculated (M⁺) 402.179087, found 402.179414.

Deleted: 24

Br
$$CO_2Me$$
 H Boc H B H H B H A H A

(2S,3aS,7aS)-6-(E-Styryl)-2,3,3a,4,5,7a-hexahydro-indole-1,2-dicarboxylic acid 1tert-butyl ester 2-methyl ester (19). Same procedure as 21 (81%); ¹H NMR (400 MHz,

CDCl₃) δ (rotamers) 7.42-7.10 (m, 5H), 6.80 (s, 0.4H), 6.78 (s, 0.6H), 6.50-6.42 (m, 1H), 6.04 (s, 0.6H), 5.90 (s, 0.4H), 4.47-4.43 (m, 0.4H), 4.42-4.37 (m, 0.6H), 4.30 (t, 0.4H, J=8.5 Hz), 4.23 (t, 0.6H, J=8.5 Hz), 3.75-3.62 (m, 3H), 2.58-2.28 (m, 2H), 2.23-2.08 (m, 2H), 1.98-1.75 (m, 4H), 1.56-1.38 (m, 9H); ¹³C NMR (100 MHz, CDCl₃) δ (rotamers) 173.9, 146.9, 137.9, 135.4, 135.0, 132.2, 132.1, 129.8, 129.0, 128.7, 127.9, 127.6, 127.2, 80.8, 80.5, 59.6, 59.0, 57.6, 57.4, 56.2, 52.5, 52.4, 36.3, 35.5, 32.2, 31.5, 28.9, 28.7, 22.5, 19.8; [α]_D +48° (c 0.75, CHCl₃); FAB/MS for C₂₃H₃₀NO₄ calculated (M + H⁺) 384.2, found 384.2.

Br
$$\stackrel{\text{H}}{\overset{\text{L}}{\overset{\text{H}}}{\overset{\text{H}}{\overset{\text{H}}{\overset{\text{H}}{\overset{\text{H}}}{\overset{\text{H}}{\overset{\text{H}}}{\overset{\text{H}}{\overset{\text{H}}}{\overset{\text{H}}{\overset{\text{H}}}{\overset{\text{H}}{\overset{\text{H}}}{\overset{\text{H}}}{\overset{\text{H}}}{\overset{\text{H}}}{\overset{\text{H}}}{\overset{\text{H}}{\overset{\text{H}}}{\overset{\text{H}}}{\overset{\text{H}}}{\overset{\text{H}}}{\overset{\text{H}}}{\overset{\text{H}}}{\overset{\text{H}}}{\overset{\text{H}}}{\overset{\text{H}}}{\overset{\text{H}}}{\overset{\text{H}}}{\overset{\text{H}}}{\overset{\text{H}}}}{\overset{\text{H}}}{\overset{\text{H}}}{\overset{\text{H}}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset{\text{H}}}{\overset{\text{H}}}}{\overset{\text{H}}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset{\text{H}}}{\overset{\text{H}}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset{\text{H}}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset{\text{H}}}{\overset{\text{H}}}{\overset{\text{H}}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset{\text{H}}}}}{\overset{\text{H}}}}{\overset{\text{H}}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset{\text{H}}}{\overset{\text{H}}}}}{\overset{\text{H}}}}{\overset{\text{H}}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset{\text{H}}$$

(2S,3aS,7aS)-6-(3-Cyano-phenyl)-2,3,3a,4,5,7a-hexahydro-indole-1,2-dicarboxylic

acid 1-*tert*-butyl ester 2-methyl ester (20). Same procedure as 21 (78%); ¹H NMR (400 MHz, CDCl₃) δ (rotamers) 7.63-7.58 (m, 2H), 7.55-7.45 (m, 1H), 7.44-7.32 (m, 1H), 6.30 (s, 0.6H), 6.10 (s, 0.4H), 4.58-4.48 (m, 0.6H), 4.47-4.38 (m, 0.4H), 4.32 (t, 0.4H, J=8.5 Hz), 4.25 (t, 0.6H, J=8.5 Hz), 3.68-3.66 (m, 3H), 2.60-2.27 (m, 3H), 2.26-2.10 (m, 1H), 2.00-1.72 (m, 3H), 1.53-1.30 (m, 9H); ¹³C NMR (100 MHz, CDCl₃) δ (rotamers) 173.9, 154.2, 143.1, 134.6, 131.1, 130.9, 130.5, 130.4, 129.9, 129.6, 129.4, 126.4, 126.2, 119.4, 112.7, 80.7, 59.3, 58.8, 57.4, 57.2, 52.5, 52.4, 35.6, 34.9, 32.1, 31.3, 28.9, 28.7, 22.8; [α]_D +44.4° (c 1.11, CHCl₃); FAB/MS for C₂₂H₂₇N₂O₄ calculated (M + H⁺) 383.2, found 383.2.

Deleted: 25

Deleted: 27

Deleted: 26

(2S,3aS,7aS)-6-Phenyl-2,3,3a,4,5,7a-hexahydro-indole-1,2-dicarboxylic acid 1-*tert*-butyl ester 2-methyl ester (21). To a solution of the bromide 16b (0.080 g, 0.222 mmol) and phenylboronic acid (0.041 g, 0.333 mmol) in THE (2 ml.) was added a

mmol) and phenylboronic acid (0.041 g, 0.333 mmol) in THF (2 mL), was added a solution of Cs_2CO_3 (0.88 mL, 1.0 M in H_2O) followed by $Pd(PPh_3)_4$ (cat.). After heating the solution at reflux for 4h, the mixture was concentrated under vacuum, the aqueous solution was extracted with CH_2CI_2 , the combined organic extracts were washed with brine and dried over Na_2SO_4 . The solvent was removed under vacuum and the resulting oil was purified by flash chromatography (EtOAc/Hexanes 10:90) to give **21** (0.067 g, 84%) as a colorless oil; ¹H NMR (400 MHz, CDCl₃) δ (rotamers) 6.45-6.15 (m, 4H), 6.25 (s, 0.5H), 6.10 (s, 0.5H), 4.58-4.52 (m, 0.5H), 4.50-4.40 (m, 0.5H), 4.33 (t, 0.5H, J=8.4 Hz), 4.25 (t, 0.5H, J=8.4 Hz), 3.75-3.61 (m, 3H), 2.57-2.29 (m, 3H), 2.28-2.12 (m, 1H), 2.08-1.75 (m, 4H), 1.56-1.30 (m, 9H); ¹³C NMR (100 MHz, CDCl₃) δ (rotamers) 128.2, 128.0, 127.1, 126.9, 125.5, 123.3, 79.9, 59.0, 56.9, 51.9, 34.5, 31.6, 28.4, 28.2, 22.4, 22.1; $[\alpha]_D$ +49.8° (c 1.50, CHCl₃); FAB/MS for $C_{21}H_{28}NO_4$ calculated (M + H⁺) 358.2, found 358.2.

Deleted: 27

Deleted: 22b

Deleted: 27

(2S,3aS,7aS)-6-(3-Hydroxy-phenyl)-2,3,3a,4,5,7a-hexahydro-indole-1,2-

dicarboxylic acid 1-*tert*-butyl ester 2-methyl ester (22). Same procedure as 21 (85%); 1 H NMR (400 MHz, CDCl₃) δ (rotamers) 7.18-7.05 (m, 1H), 6.95-6.67 (m, 3H), 6.22 (s, 0.5H), 6.08 (s, 0.5H), 4.61-4.53 (m, 0.5H), 4.48-4.37 (m, 0.5H), 4.35 (t, 0.5H,

Deleted: 28

J=8.2 Hz), 4.25 (t, 0.5H, J=8.2 Hz), 3.68 (s, 1.5H), 3.66 (s, 1.5H), 2.58-2.10 (m, 4H), 2.03-1.68 (m, 3H), 1.50 (s, 4.5H), 1.43 (s, 4.5H); ¹³C NMR (100 MHz, CDCl₃) δ (rotamers) 174.1, 174.0, 157.3, 156.5, 154.9, 154.6, 143.4, 136.3, 130.3, 129.7, 129.6, 123.4, 119.0, 117.9, 114.9, 114.7, 113.0, 81.1, 80.9, 59.6, 58.9, 57.6, 52.7, 52.5, 35.2, 32.1, 31.4, 28.9, 28.8, 22.9, 22.5, 21.5; [α]_D +21.7° (c 1.08, CHCl₃); HRMS for C₂₁H₂₇NO₅ calculated (M⁺) 373.188923, found 373.188356.

$$\begin{array}{c|c} H \\ \hline \\ H \\ \hline \\ H \\ Boc \\ \hline \\ 21 \\ \end{array} \begin{array}{c} H \\ \hline \\ H \\ Boc \\ \hline \\ H \\ Boc \\ \end{array} \begin{array}{c} H \\ \hline \\ H \\ Boc \\ \hline \\ 23 \\ \end{array}$$

(2S,3aS,6S,7aS)-6-phenyl-octahydro-indole-1,2-dicarboxylic acid 1-tert-butyl ester

2-methyl ester (23). To a solution of **21** (0.050 g, 0.140 mmol) in EtOAc (2.5 mL), was added Pd/C 10% (cat.) and stirred under 1 atm. of H₂ for 24h. The catalyst was filtered through a celite pad, the filtrate was concentrated under vacuum and the resulting oil was purified by flash chromatography (EtOAc/Hexanes 0:100 to 10:90) to give **23** (0.035 g, 70%) as a white solid crystallizing in hexanes; ¹H NMR (400 MHz, CDCl₃) δ (rotamers) 7.34-7.15 (m, 5H), 4.29 (dd, 0.6H, J=7.7 Hz, J=9.9 Hz), 4.24 (dd, 0.4H, J=7.7 Hz, J=9.9 Hz), 4.08-4.02 (m, 0.6H), 3.95-3.90 (m, 0.4H), 3.76 (s, 1.5H), 3.74 (s, 1.5H), 2.53-2.30 (m, 2H), 2.25-2.00 (m, 2H), 1.90-1.79 (m, 2H), 1.75-1.50 (m, 4H), 1.43 (s, 4.5H), 1.39 (s, 4.5H); ¹³C NMR (100 MHz, CDCl₃) δ (rotamers) 173.9, 153.0, 146.0, 128.3, 128.1, 126.7, 126.0, 125.8, 79.7, 59.3, 58.7, 57.8, 57.5, 52.0, 51.8, 41.6, 41.4, 36.3, 35.6, 35.1, 34.8, 32.4, 31.6, 28.6, 28.3, 28.1, 27.8, 25.9, 25.7; [α]_D -16.8° (c 0.75, CHCl₃); m.p.: 100-103°C ;HRMS for C₂₁H₃₀NO₄ calculated (M+H⁺) 360.217484, found 360.217267.

Br
$$\stackrel{\text{H}}{\overset{\text{H}}}{\overset{\text{H}}{\overset{\text{H}}}{\overset{\text{H}}{\overset{\text{H}}{\overset{\text{H}}}{\overset{\text{H}}{\overset{\text{H}}}{\overset{\text{H}}{\overset{\text{H}}}{\overset{\text{H}}}{\overset{\text{H}}{\overset{\text{H}}}{\overset{\text{H}}}{\overset{\text{H}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset{\text{H}}}{\overset{\text{H}}}{\overset{\text{H}}}{\overset{\text{H}}}{\overset{\text{H}}}}{\overset{\text{H}}}{\overset{\text{H}}}{\overset{\text{H}}}{\overset{\text{H}}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset{\text{H}}}{\overset{\text{H}}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset{\text{H}}}{\overset{\text{H}}}{\overset{\text{H}}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset{\text{H}}}{\overset{\text{H}}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset{\text{H}}}{\overset{\text{H}}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset{\text{H}}}{\overset{\text{H}}}}{\overset{H}}}{\overset{\text{H}}}}}{\overset{\text{H}}}}{\overset{H}}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset{\text{H}}}$$

Deleted: 29

Deleted: 27

(2S,3aS,7aS)-6-(2-Methoxycarbonyl-vinyl)-2,3,3a,4,5,7a-hexahydro-indole-1,2-

dicarboxylic acid 1-tert-butyl ester 2-methyl ester (24). To a solution of the bromide **_16b** (0.072 g, 0.200 mmol), methyl acrylate (0.14 mL, 1.60 mmol) and Et₃N (0.11 mL, 0.800 mmol) in MeCN (3 mL), was added P(o-tolyl)₃ (0.009 g, 0.03 mmol) and Pd(OAc)₂ (0.003 g, 0.01 mmol). After heating the solution at reflux for 12h under argon, P(o-tolyl)₃ (0.009 g, 0.03 mmol) and Pd(OAc)₂ (0.003 g, 0.01 mmol) were added and the heating was continue for another 12h. Finally, the solution was cooled down to RT, H₂O was added, the aqueous solution was extracted with CH₂Cl₂, the combined organic extracts were washed with brine and dried over Na₂SO₄. The solvent was removed under vacuum and the resulting oil was purified by flash chromatography (EtOAc/Hexanes 15:85) to give **24** (0.055 g, 75%) as a colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.32 (d, 1H, J=15.9 Hz), 6.30 (s, 0.6H), 6.18 (s, 0.4H), 5.86-5.76 (m, 1H), 4.51-4.42 (m, 0.6H), 4.40-4.33 (m, 0.4H), 4.27 (t, 0.4H, J=8.4 Hz), 4.22 (t, 0.6H, J=8.4 Hz), 3.74 (s, 3H), 3.68 (s, 3H), 2.58-2.41 (m, 1H), 2.22-1.97 (m, 3H), 1.88-1.70 (m, 3H), 1.50 (s, 4.5H), 1.42 (s, 4.5H); ¹³C NMR (100 MHz, CDCl₃) δ 173.7, 173.3, 167.9, 147.8, 135.9, 135.8, 134.1, 133.7, 117.2, 117.1, 80.8, 59.4, 58.9, 57.3, 57.1, 52.4, 51.9, 45.1, 36.0, 35.2, 32.1, 31.4, 28.9, 28.7, 22.2, 22.1, 19.5; $[\alpha]_D$ +141° (c 0.750, CHCl₃); HRMS for C₁₉H₂₇NO₆ calculated (M⁺) 365.183838, found 365.183716.

(2S,3aS,7aS)-6-Vinyl-2,3,3a,4,5,7a-hexahydro-indole-1,2-dicarboxylic acid 1-*tert*-butyl ester 2-methyl ester (25). To a solution of the 16b (0.080 g, 0.222 mmol) and tributylvinyltin (71 μ L, 0.244 mmol) in toluene (2.5 mL), was added Pd(PPh₃)₄ (cat.). After heating the solution at 100°C for 8h, the mixture was concentrated under vacuum and the resulting oil was purified by flash chromatography (EtOAc/Hexanes 10:90) to give 25 (0.048 g, 71%) as a colorless oil; ¹H NMR (400 MHz, CDCl₃) δ (rotamers) 6.40-

Deleted: 30

Deleted: 22b

Deleted: 30

Deleted: 31 Deleted: 22b

6.33 (m, 1H), 5.91 (s, 0.6H), 5.78 (m, 0.4H), 5.17-5.10 (m, 1H), 5.03-4.96 (m, 1H), 4.48-4.41 (m, 0.6H), 4.38-4.30 (m, 0.4H), 4.28 (t, 0.4H, J=8.3 Hz), 4.23 (t, 0.6H, J=8.3 Hz), 3.67 (s, 3H), 2.50-2.35 (m, 1H), 2.22-2.08 (m, 2H), 2.07-1.90 (m, 1H), 1.87-1.70 (m, 3H), 1.48 (s, 4.5H), 1.41 (s, 4.5H); ¹³C NMR (100 MHz, CDCl₃) δ (rotamers) 173.9, 154.2, 140.0, 135.6, 135.2, 128.1, 112.7, 112.4, 80.5, 59.5, 58.9, 57.4, 57.2, 52.5, 52.3, 36.3, 35.5, 32.2, 31.4, 28.9, 28.7, 22.3, 19.0; α =10 +131° (c 1.00, CHCl₃); HRMS for C₁₇H₂₅NO₄ calculated (M⁺) 307.178359, found 307.179443.

CRYSTAL AND MOLECULAR STRUCTURE OF C21 H29 N O4 COMPOUND (HAN403)

Friday, September 03, 2004

Equipe Hanessian

Département de chimie, Université de Montréal,
C.P. 6128, Succ. Centre-Ville, Montréal, Québec, H3C 3J7 (Canada)

Structure solved and refined in the laboratory of X-ray diffraction Université de Montréal by Dr. Michel Simard.

Table 1. Crystal data and structure refinement for C21 H29 N O4.

Identification code	HAN403
Empirical formula	C21 H29 N O4
Formula weight	359.45
Temperature	293 (2) K
Wavelength	1.54178 Å
Crystal system	Orthorhombic .
Space group	P2 ₁ 2 ₁ 2 ₁
Unit cell dimensions	a = 6.467(3) Å $\alpha = 90^{\circ}$ b = 10.980(5) Å $\beta = 90^{\circ}$ c = 29.081(17) Å $\gamma = 90^{\circ}$
Volume	2065.0(18)Å ³
·Z	4
Density (calculated)	1.156 Mg/m ³
Absorption coefficient	0.638 mm ⁻¹
F(000)	776
Crystal size	0.50 x 0.15 x 0.12 mm
Theta range for data collection	3.04 to 70.05°
Index ranges	$-7 \le h \le 7$, $-13 \le k \le 13$, $-35 \le \lambda \le 35$
Reflections collected	16270
Independent reflections	3915 $[R_{int} = 0.070]$
Absorption correction	None
Max. and min. transmission	0.9300 and 0.7400
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	3915 / 0 / 240
Goodness-of-fit on F ²	0.738
<pre>Final R indices [I>2sigma(I)]</pre>	$R_1 = 0.0426$, $wR_2 = 0.0858$
R indices (all data)	$R_1 = 0.0822$, $wR_2 = 0.0976$
Absolute structure parameter	-0.5(3)

© 2004 American Chemical Society, Org. Lett., Hanessian ol040053b Supporting Info Page 24

Extinction coefficient

0.00322(19)

Largest diff. peak and hole

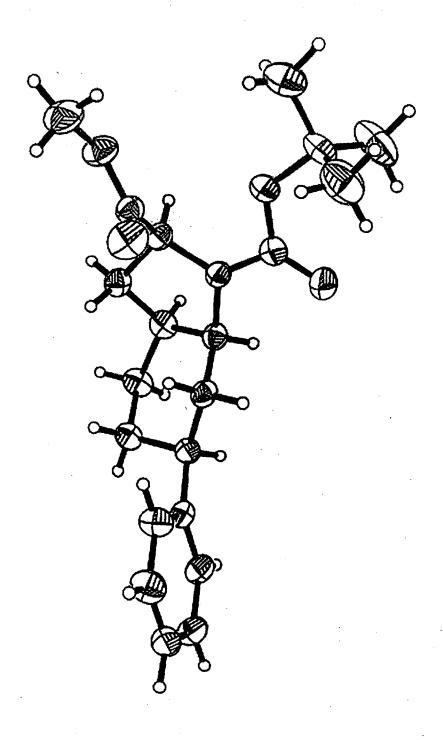
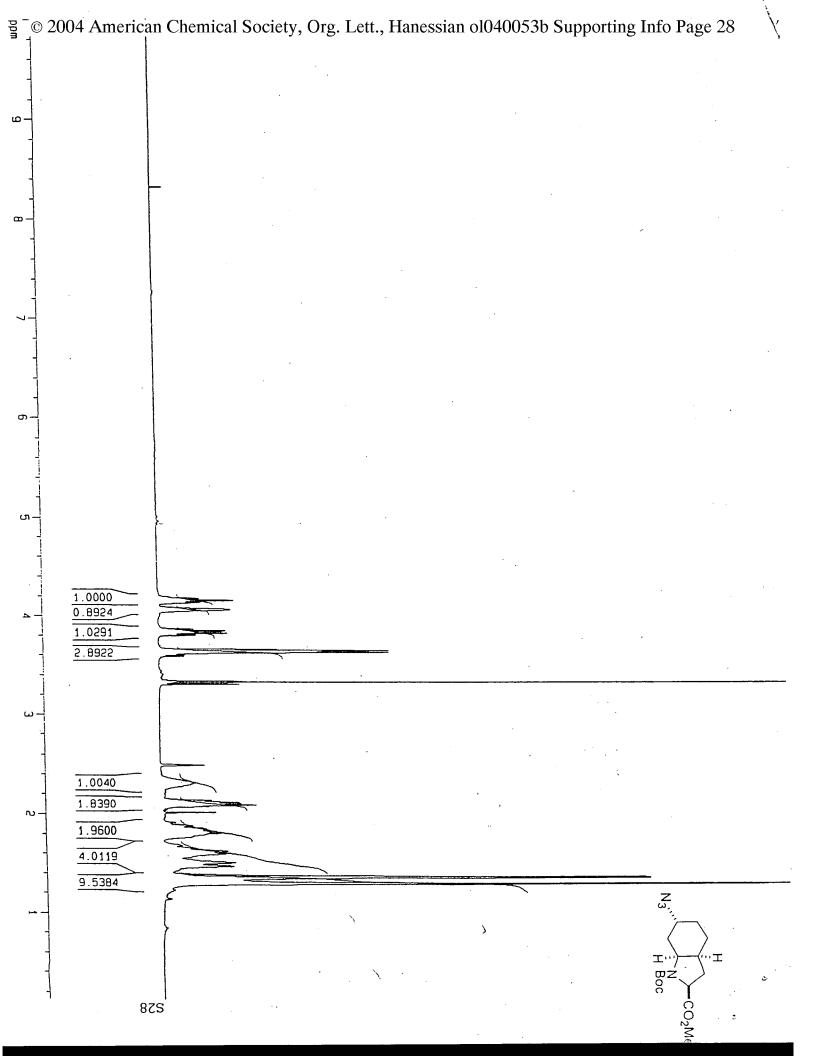
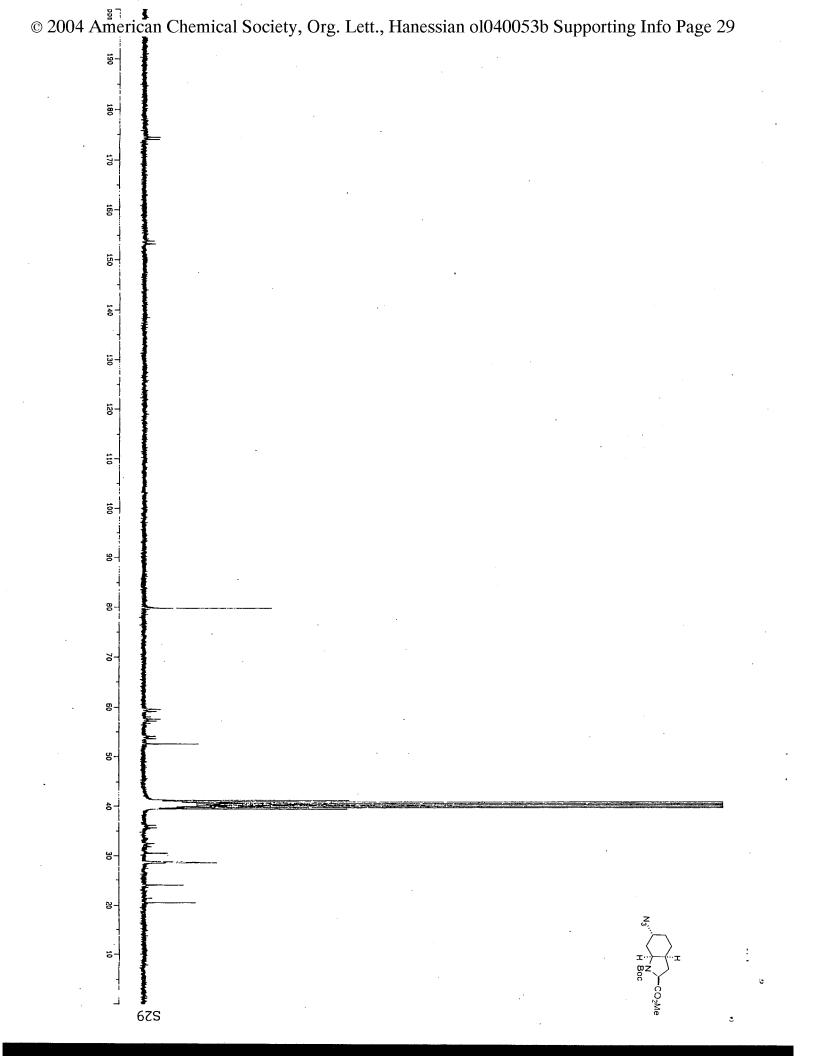
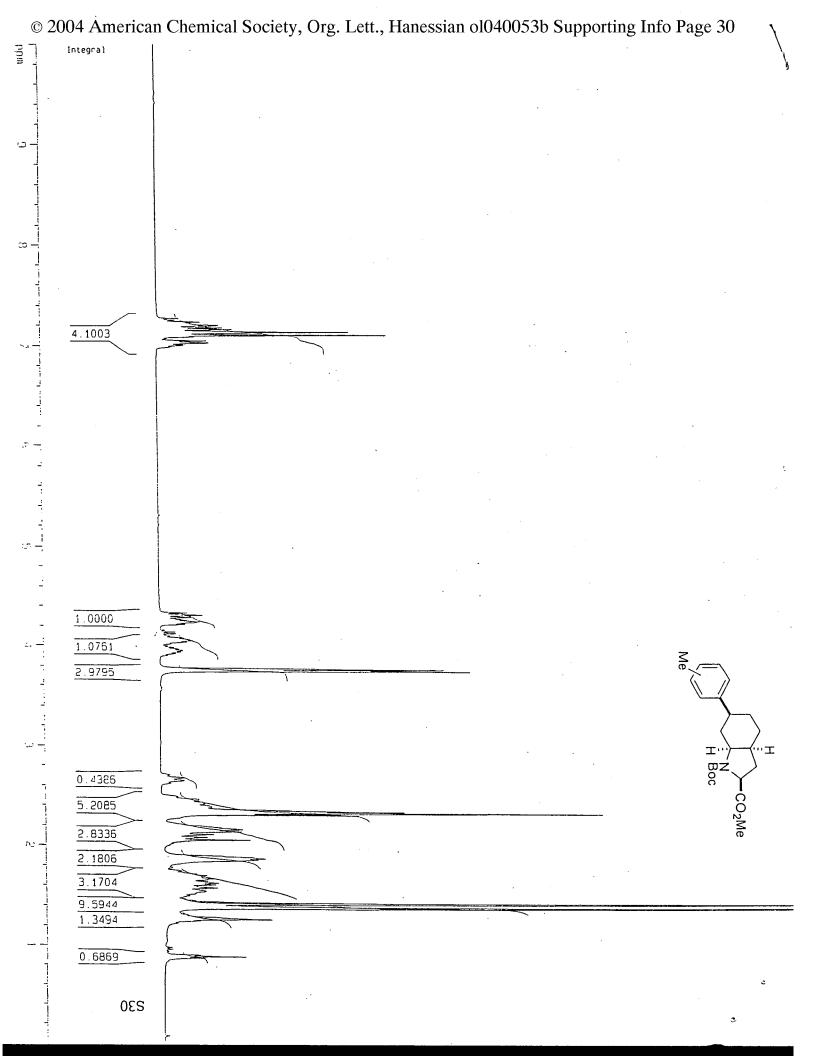
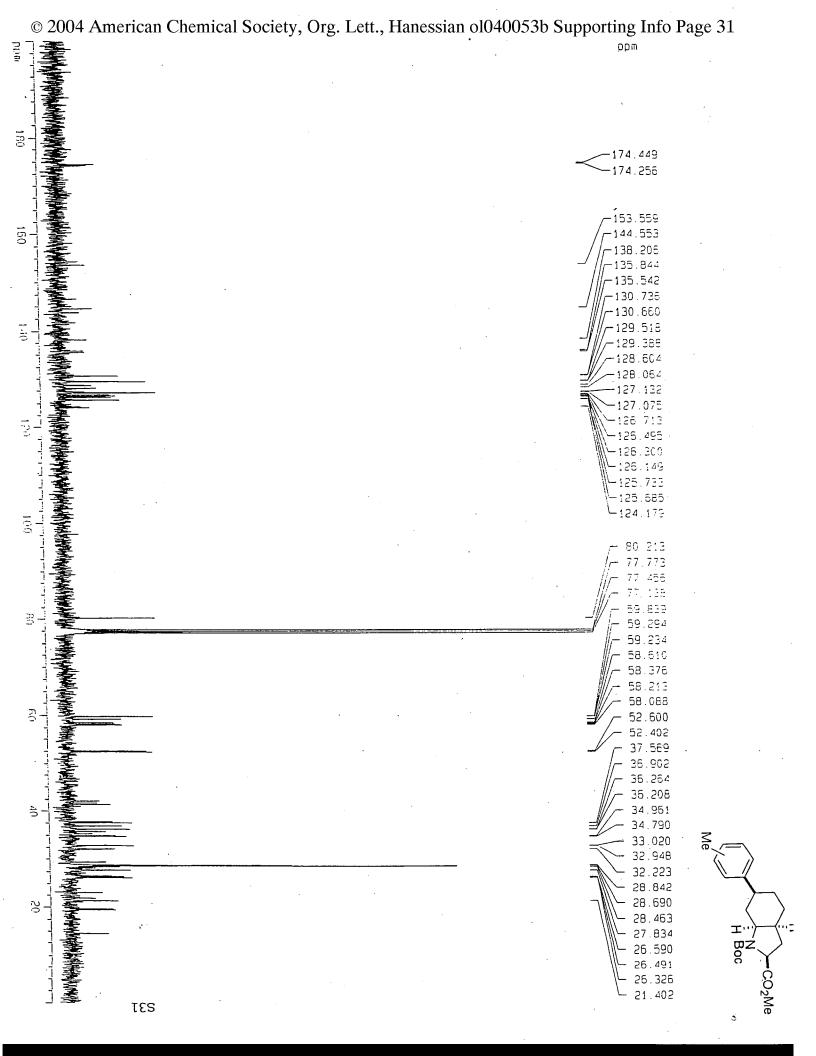

0.124 and -0.141 e/ ${\rm \mathring{A}}^3$

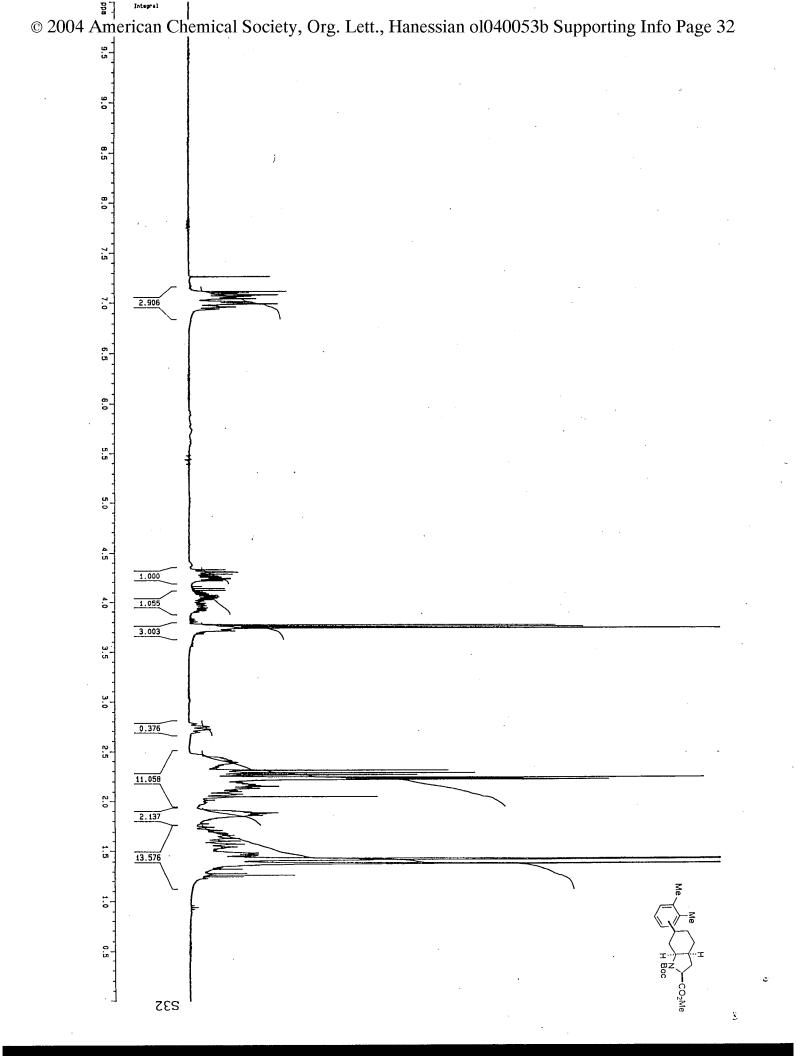
Table 5. Bond lengths [Å] and angles [°] for C21 H29 N O4


	1 010/01	0/14) 0/1) 0/0)	110 2/01
O(1)-C(9)	1.212(3)	C(14)-C(1)-C(2)	112.3(2)
O(2)-C(9)	1.338(3)	C(3) - C(2) - C(1)	103.5(2)
O(2)-C(10)	1.481(3)	C(8) - C(3) - C(2)	103.6(2)
O(3)-C(14)	1.192(3)	C(8) - C(3) - C(4)	114.9(2)
O(4) - C(14)	1.321(3)	C(2)-C(3)-C(4)	116.9(3)
O(4)-C(15)	1.445(4)	C(5)-C(4)-C(3)	113.1(2)
N(1) - C(9)	1.354(4)	C(6)-C(5)-C(4)	111.2(2)
N(1)-C(8)	1.468(3)	C(16)-C(6)-C(7)	114.9(2)
N(1) - C(1)	1.469(3)	C(16) - C(6) - C(5)	111.0(2)
C(1) - C(14)	1.496(4)	C(7) - C(6) - C(5)	108.1(2)
C(1) - C(2)	1.539(4)	C(6)-C(7)-C(8)	111.1(2)
C(2)-C(3)	1.519(3)	N(1) - C(8) - C(3)	101.8(2)
C(3)-C(8)	1.512(4)	N(1)-C(8)-C(7)	112.4(2)
C(3) - C(4)	1.528(4)	C(3) - C(8) - C(7)	113.1(2)
C(4)-C(5)	1.526(3)	O(1)-C(9)-O(2)	127.0(3)
C(5)-C(6)	1.522(3)	O(1) - C(9) - N(1)	123.4(3)
C(6)-C(16)	1.507(4)	O(2)-C(9)-N(1)	109.6(3)
C(6)-C(7)	1.517(3)	O(2) - C(10) - C(13)	109.1(3)
C(7)-C(8)	1.529(3)	O(2) - C(10) - C(12)	110.8(3)
C(10)-C(13)	1.486(5)	C(13)-C(10)-C(12)	111.8(4)
C(10)-C(12)	1.495(4)	O(2)-C(10)-C(11)	101.5(3)
C(10)-C(11)	1.501(5)	C(13) - C(10) - C(11)	111.5(4)
C(16)-C(17)	1.380(4)	C(12)-C(10)-C(11)	111.7(3)
C(16)-C(21)	1.386(4)	O(3)-C(14)-O(4)	124.0(3)
C(17) - C(18)	1.377(4)	O(3) - C(14) - C(1)	125.1(3)
C(18)-C(19)	1.363(4)	O(4)-C(14)-C(1)	110.6(3)
C(19)-C(20)	1.371(4)	C(17) - C(16) - C(21)	116.4(3)
C(20)-C(21)	1.380(4)	C(17)-C(16)-C(6)	123.7(3)
		C(21) - C(16) - C(6)	119.8(3)
C(9)-O(2)-C(10)	120.8(3)	C(18)-C(17)-C(16)	121.3(3)
C(14) - O(4) - C(15)	116.3(3)	C(19)-C(18)-C(17)	121.4(3)
C(9)-N(1)-C(8)	122.5(2)	C(18)-C(19)-C(20)	118.6(3)
C(9)-N(1)-C(1)	123.8(3)	C(19)-C(20)-C(21)	120.0(3)
C(8)-N(1)-C(1)	113.3(2)	C(20)-C(21)-C(16)	122.3(3)
N(1) - C(1) - C(14)	112.6(2)		
N(1) - C(1) - C(2)	102.1(2)		


Table 6. Torsion angles [°] for C21 H29 N O4.


C(9) - N(1) - C(1) - C(14)	-60.5(4)	C(8)-N(1)-C(9)-O(1)	-5.3(5)
C(8) - N(1) - C(1) - C(14)	126.9(3)	C(1) - N(1) - C(9) - O(1)	-177.2(3)
C(9) - N(1) - C(1) - C(2)	178.8(3)	C(8)-N(1)-C(9)-O(2)	174.0(2)
C(8) - N(1) - C(1) - C(2)	6.2(3)	C(1) - N(1) - C(9) - O(2)	2.1(4)
N(1) - C(1) - C(2) - C(3)	-27.9(3)	C(9) - O(2) - C(10) - C(13)	-60.1(4)
C(14)-C(1)-C(2)-C(3)	-148.8(2)	C(9) - O(2) - C(10) - C(12)	63.4(4)
C(1)-C(2)-C(3)-C(8)	39.8(3)	C(9)-O(2)-C(10)-C(11)	-177.9(3)
C(1) - C(2) - C(3) - C(4)	167.3(2)	C(15) - O(4) - C(14) - O(3)	3.6(5)
C(8)-C(3)-C(4)-C(5)	42.4(4)	C(15) - O(4) - C(14) - C(1)	177.9(3)
C(2)-C(3)-C(4)-C(5)	- 79.4(3)	N(1)-C(1)-C(14)-O(3)	-37.5(4)
C(3)-C(4)-C(5)-C(6)	- 52.0(3)	C(2)-C(1)-C(14)-O(3)	77.1(4)
C(4)-C(5)-C(6)-C(16)	-171.5(2)	N(1)-C(1)-C(14)-O(4)	148.3(2)
C(4)-C(5)-C(6)-C(7)	61.7(3)	C(2)-C(1)-C(14)-O(4)	-97.0(3)
C(16)-C(6)-C(7)-C(8)	173.4(2)	C(7)-C(6)-C(16)-C(17)	36.3(4)
C(5)-C(6)-C(7)-C(8)	-62.1(3)	C(5)-C(6)-C(16)-C(17)	-86.6(3)
C(9)-N(1)-C(8)-C(3)	-154.7(3)	C(7)-C(6)-C(16)-C(21)	-147.4(3)
C(1)-N(1)-C(8)-C(3)	18.0(3)	C(5)-C(6)-C(16)-C(21)	89.7(3)
C(9)-N(1)-C(8)-C(7)	84.0(3)	C(21)-C(16)-C(17)-C(18)	-0.3(4)
C(1)-N(1)-C(8)-C(7)	-103.3(3)	C(6)-C(16)-C(17)-C(18)	176.1(3)
C(2)-C(3)-C(8)-N(1)	-34.9(3)	C(16)-C(17)-C(18)-C(19)	-0.3(5)
C(4)-C(3)-C(8)-N(1)	-163.6(2)	C(17) - C(18) - C(19) - C(20)	0.6(5)
C(2)-C(3)-C(8)-C(7)	85.9(3)	C(18)-C(19)-C(20)-C(21)	-0.2(5)
C(4)-C(3)-C(8)-C(7)	-42.8(3)	C(19)-C(20)-C(21)-C(16)	-0.5(5)
C(6)-C(7)-C(8)-N(1)	167.8(2)	C(17)-C(16)-C(21)-C(20)	0.7(4)
C(6)-C(7)-C(8)-C(3)	53.2(3)	C(6) - C(16) - C(21) - C(20)	-175.8(3)
C(10)-O(2)-C(9)-O(1)	-4.0(5)		
C(10) - O(2) - C(9) - N(1)	176.8(3)	•	




ORTEP view of the C21 H29 N O4 compound with the numbering scheme adopted. Ellipsoids drawn at 30% probability level. Hydrogens represented by sphere of arbitrary size.

